- Calle 45 #34a-15 Medellín-Antioquia
- (301) 6236830
- AdminNacional@Acolsi.org
Reliable MLA-C01 Practice Questions - MLA-C01 Latest Exam Tips
If you really want to get an international certificate, MLA-C01 training quiz is really your best choice. Of course. MLA-C01 preparation materials are global products that have been tested by users worldwide. You can be absolutely assured about the quality of the MLA-C01 training quiz. Our company has hired the most professional team of experts at all costs to ensure that the content of MLA-C01 guide questions is the most valuable. you really must get international certification!
The authority and validity of Amazon MLA-C01 pdf practice are the 100% pass guarantee for all the IT candidates. We ensure you one year free update after purchase, so you can obtain the latest information about MLA-C01 test cram review without costing extra money. Besides, you can download the VCEEngine MLA-C01 Torrent dumps and install it on your electronic device, thus you can review at anytime and anywhere available. The fast study and MLA-C01 valid practice will facilitate your coming test.
>> Reliable MLA-C01 Practice Questions <<
MLA-C01 Latest Exam Tips, New MLA-C01 Exam Simulator
New developments in the tech sector always bring new job opportunities. These new jobs have to be filled with the AWS Certified Machine Learning Engineer - Associate (MLA-C01) certification holders. So to fill the space, you need to pass the AWS Certified Machine Learning Engineer - Associate (MLA-C01) exam. Earning the AWS Certified Machine Learning Engineer - Associate (MLA-C01) certification helps you clear the obstacles you face while working in the Amazon field. To get prepared for the AWS Certified Machine Learning Engineer - Associate (MLA-C01) certification exam, applicants face a lot of trouble if the study material is not updated. They are using outdated materials resulting in failure and loss of money and time.
Amazon MLA-C01 Exam Syllabus Topics:
Topic
Details
Topic 1
Topic 2
Topic 3
Topic 4
Amazon AWS Certified Machine Learning Engineer - Associate Sample Questions (Q45-Q50):
NEW QUESTION # 45
Case study
An ML engineer is developing a fraud detection model on AWS. The training dataset includes transaction logs, customer profiles, and tables from an on-premises MySQL database. The transaction logs and customer profiles are stored in Amazon S3.
The dataset has a class imbalance that affects the learning of the model's algorithm. Additionally, many of the features have interdependencies. The algorithm is not capturing all the desired underlying patterns in the data.
Which AWS service or feature can aggregate the data from the various data sources?
Answer: B
Explanation:
* Problem Description:
* The dataset includes multiple data sources:
* Transaction logs and customer profiles in Amazon S3.
* Tables in an on-premises MySQL database.
* There is aclass imbalancein the dataset andinterdependenciesamong features that need to be addressed.
* The solution requiresdata aggregationfrom diverse sources for centralized processing.
* Why AWS Lake Formation?
* AWS Lake Formationis designed to simplify the process of aggregating, cataloging, and securing data from various sources, including S3, relational databases, and other on-premises systems.
* It integrates with AWS Glue for data ingestion and ETL (Extract, Transform, Load) workflows, making it a robust choice for aggregating data from Amazon S3 and on-premises MySQL databases.
* How It Solves the Problem:
* Data Aggregation: Lake Formation collects data from diverse sources, such as S3 and MySQL, and consolidates it into a centralized data lake.
* Cataloging and Discovery: Automatically crawls and catalogs the data into a searchable catalog, which the ML engineer can query for analysis or modeling.
* Data Transformation: Prepares data using Glue jobs to handle preprocessing tasks such as addressing class imbalance (e.g., oversampling, undersampling) and handling interdependencies among features.
* Security and Governance: Offers fine-grained access control, ensuring secure and compliant data management.
* Steps to Implement Using AWS Lake Formation:
* Step 1: Set up Lake Formation and register data sources, including the S3 bucket and on- premises MySQL database.
* Step 2: Use AWS Glue to create ETL jobs to transform and prepare data for the ML pipeline.
* Step 3: Query and access the consolidated data lake using services such as Athena or SageMaker for further ML processing.
* Why Not Other Options?
* Amazon EMR Spark jobs: While EMR can process large-scale data, it is better suited for complex big data analytics tasks and does not inherently support data aggregation across sources like Lake Formation.
* Amazon Kinesis Data Streams: Kinesis is designed for real-time streaming data, not batch data aggregation across diverse sources.
* Amazon DynamoDB: DynamoDB is a NoSQL database and is not suitable for aggregating data from multiple sources like S3 and MySQL.
Conclusion: AWS Lake Formation is the most suitable service for aggregating data from S3 and on-premises MySQL databases, preparing the data for downstream ML tasks, and addressing challenges like class imbalance and feature interdependencies.
References:
* AWS Lake Formation Documentation
* AWS Glue for Data Preparation
NEW QUESTION # 46
An ML engineer has trained a neural network by using stochastic gradient descent (SGD). The neural network performs poorly on the test set. The values for training loss and validation loss remain high and show an oscillating pattern. The values decrease for a few epochs and then increase for a few epochs before repeating the same cycle.
What should the ML engineer do to improve the training process?
Answer: C
Explanation:
In training neural networks using Stochastic Gradient Descent (SGD), the learning rate is a critical hyperparameter that influences the convergence behavior of the model. Observing oscillations in training and validation loss suggests that the learning rate may be too high, causing the optimization process to overshoot minima in the loss landscape.
Understanding the Impact of Learning Rate:
* High Learning Rate:A high learning rate can cause the model parameters to update too aggressively, leading to oscillations or divergence in the loss function. This manifests as the loss decreasing for a few epochs and then increasing, repeating this cycle without stable convergence.
* Low Learning Rate:A low learning rate results in smaller parameter updates, allowing the model to converge more steadily to a minimum, albeit potentially at a slower pace.
Recommended Action:
Decreasing the learning rate allows for more precise adjustments to the model parameters, facilitating smoother convergence and reducing oscillations in the loss function. This adjustment helps the model settle into minima more effectively, improving overall performance.
Supporting Evidence:
Research indicates that large learning rates can lead to phenomena such as "catapults," where spikes in training loss occur due to aggressive updates. Reducing the learning rate mitigates these issues, promoting stable training dynamics.
References:
* Catapults in SGD: Spikes in the Training Loss and Their Impact on Generalization Through Feature Learning
* Lecture 7: Training Neural Networks, Part 2 - Stanford University
Conclusion:
To address oscillating training and validation loss during neural network training with SGD, decreasing the learning rate is an effective strategy. This adjustment facilitates smoother convergence and enhances the model's performance on the test set.
NEW QUESTION # 47
An ML engineer needs to use AWS services to identify and extract meaningful unique keywords from documents.
Which solution will meet these requirements with the LEAST operational overhead?
Answer: C
Explanation:
Amazon Comprehend provides pre-built functionality for key phrase extraction and can identify meaningful keywords from documents with minimal setup or operational overhead. It eliminates the need for manual preprocessing, stemming, or stop-word removal and does not require custom model development or infrastructure management. This makes it the most efficient and low-maintenance solution for the task.
NEW QUESTION # 48
A company has developed a new ML model. The company requires online model validation on 10% of the traffic before the company fully releases the model in production. The company uses an Amazon SageMaker endpoint behind an Application Load Balancer (ALB) to serve the model.
Which solution will set up the required online validation with the LEAST operational overhead?
Answer: B
Explanation:
Scenario:The company wants to perform online validation of a new ML model on 10% of the traffic before fully deploying the model in production. The setup must have minimal operational overhead.
Why Use SageMaker Production Variants?
* Built-In Traffic Splitting:Amazon SageMaker endpoints support production variants, allowing multiple models to run on a single endpoint. You can direct a percentage of incoming traffic to each variant by adjusting the variant weights.
* Ease of Management:Using production variants eliminates the need for additional infrastructure like separate endpoints or custom ALB configurations.
* Monitoring with CloudWatch:SageMaker automatically integrates with CloudWatch, enabling real- time monitoring of model performance and invocation metrics.
Steps to Implement:
* Deploy the New Model as a Production Variant:
* Update the existing SageMaker endpoint to include the new model as a production variant. This can be done via the SageMaker console, CLI, or SDK.
Example SDK Code:
import boto3
sm_client = boto3.client('sagemaker')
response = sm_client.update_endpoint_weights_and_capacities(
EndpointName='existing-endpoint-name',
DesiredWeightsAndCapacities=[
{'VariantName': 'current-model', 'DesiredWeight': 0.9},
{'VariantName': 'new-model', 'DesiredWeight': 0.1}
]
)
* Set the Variant Weight:
* Assign a weight of 0.1 to the new model and 0.9 to the existing model. This ensures 10% of traffic goes to the new model while the remaining 90% continues to use the current model.
* Monitor the Performance:
* Use Amazon CloudWatch metrics, such as InvocationCount and ModelLatency, to monitor the traffic and performance of each variant.
* Validate the Results:
* Analyze the performance of the new model based on metrics like accuracy, latency, and failure rates.
Why Not the Other Options?
* Option B:Setting the weight to 1 directs all traffic to the new model, which does not meet the requirement of splitting traffic for validation.
* Option C:Creating a new endpoint introduces additional operational overhead for traffic routing and monitoring, which is unnecessary given SageMaker's built-in production variant capability.
* Option D:Configuring the ALB to route traffic requires manual setup and lacks SageMaker's seamless variant monitoring and traffic splitting features.
Conclusion:Using production variants with a weight of 0.1 for the new model on the existing SageMaker endpoint provides the required traffic split for online validation with minimal operational overhead.
References:
* Amazon SageMaker Endpoints
* SageMaker Production Variants
* Monitoring SageMaker Endpoints with CloudWatch
NEW QUESTION # 49
A company is using Amazon SageMaker to create ML models. The company's data scientists need fine- grained control of the ML workflows that they orchestrate. The data scientists also need the ability to visualize SageMaker jobs and workflows as a directed acyclic graph (DAG). The data scientists must keep a running history of model discovery experiments and must establish model governance for auditing and compliance verifications.
Which solution will meet these requirements?
Answer: A
Explanation:
SageMaker Pipelines provides a directed acyclic graph (DAG) view for managing and visualizing ML workflows with fine-grained control. It integrates seamlessly with SageMaker Studio, offering an intuitive interface for workflow orchestration.
SageMaker ML Lineage Tracking keeps a running history of experiments and tracks the lineage of datasets, models, and training jobs. This feature supports model governance, auditing, and compliance verification requirements.
NEW QUESTION # 50
......
For candidates who are going to buying the MLA-C01 exam dumps online, you may concern more about the personal information. If you choose us, your personal information will be protected well. Once you buy MLA-C01 exam materials of us, we will send the downloading link to you automatically, and you can start your training immediately. Once the order finish, your personal information such as your name and your email address will be concealed. In addition, MLA-C01 Exam Dumps provide you with free update for 365 days, namely you can get the latest information about the exam.
MLA-C01 Latest Exam Tips: https://www.vceengine.com/MLA-C01-vce-test-engine.html
© Copyright 2023 by Eduact WordPress Theme
Please Login To Add Wishlist
WhatsApp Col